

| Department of Electricity and Energy / Department of Electricity and Energy / |                                                                                                                                                                                                                                                                                                                                                    |            |          |            |         |      |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|------------|---------|------|
| Course Code                                                                   | Course Name                                                                                                                                                                                                                                                                                                                                        | Teoretical | Practice | Laboratory | Credits | ECTS |
| ENR103                                                                        | DIRECT CURRENT CIRCUIT ANALYSIS                                                                                                                                                                                                                                                                                                                    | 3.00       | 1.00     | 0.00       | 4.00    | 4.00 |
| Course Detail                                                                 |                                                                                                                                                                                                                                                                                                                                                    |            |          |            |         |      |
| Course Language                                                               | : Turkish                                                                                                                                                                                                                                                                                                                                          |            |          |            |         |      |
| Qualification Degree                                                          | : PreBachelor                                                                                                                                                                                                                                                                                                                                      |            |          |            |         |      |
| Course Type                                                                   | : Compulsory                                                                                                                                                                                                                                                                                                                                       |            |          |            |         |      |
| Preconditions                                                                 | : Not                                                                                                                                                                                                                                                                                                                                              |            |          |            |         |      |
| Objectives of the Course                                                      | : To analyze the electric circuit of the basic branches of the science of electricity, and to apply the basic theorems and the methods of circuit solution.                                                                                                                                                                                        |            |          |            |         |      |
| Course Contents                                                               | : Static electricity, taking precautions against the unpredictable effects of electrical current, direct current circuit analysis, mesh-current method, node voltage method, resource links, Thevenin's Theorem, Norton's Theorem, Superposition Theorem, Maximum power Theorem, direct current storage elements, direct current power and energy. |            |          |            |         |      |
| Recommended or Required Reading                                               | : PC, Projection, Experiment sets<br>1)Doğru Akım Devreleri & Problem Cozumleri, Mustafa Yagimli, Feyzi Akar, Beta Press, 2010.<br>2)Doğru Akım Devre Analizi ve Çözümlü Örnekler, İhsan Güller,Dora Yayıncılık,lecture notes                                                                                                                      |            |          |            |         |      |
| Course Instructors                                                            | : Öğr. Gör. Ensar Koşatepe                                                                                                                                                                                                                                                                                                                         |            |          |            |         |      |
| Presentation Of Course                                                        | : formal                                                                                                                                                                                                                                                                                                                                           |            |          |            |         |      |
| Update Date                                                                   | : 9/7/2025 8:54:44 PM                                                                                                                                                                                                                                                                                                                              |            |          |            |         |      |
| Dosya İndirilme Tarihi                                                        | : 9/11/2025                                                                                                                                                                                                                                                                                                                                        |            |          |            |         |      |

|                                                                        |
|------------------------------------------------------------------------|
| Course Outcomes                                                        |
| Upon the completion of this course a student :                         |
| 1 Know the basic concepts of the electricity.                          |
| 2 Get the issues that contain the direct-current applications.         |
| 3 Apply the basic-circuit solution methods using the law of Kirchhoff. |
| 4 Perform circuit analysis using the method of loop currents.          |
| 5 Perform circuit analysis using the method of node voltages.          |
| 6 Perform circuit analysis making Star-Delta transformation.           |
| 7 Perform circuit analysis using the superposition theorem.            |
| 8 Create the Thevenin equivalent of the electricity circuit.           |
| 9 Create the Norton equivalent of the electricity circuit.             |

| Course Code     | Course Name                        | Teoretical                                                                                                                                                                         | Practice                                                                                                  | Laboratory                                                     | Credits                       | ECTS                                               |
|-----------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|----------------------------------------------------|
| Weekly Contents |                                    |                                                                                                                                                                                    |                                                                                                           |                                                                |                               |                                                    |
|                 | Teoretical                         | Practice                                                                                                                                                                           | Laboratory                                                                                                | Preparation Info                                               | Teaching Methods              | Course Learning Outcomes                           |
| 1.Week          | *Basic Concepts                    | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.C.1<br>Ö.C.1<br>Ö.C.1<br>Ö.C.1                   |
| 2.Week          | *Series-Parallel Resistor Circuits | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.C.1<br>Ö.C.1<br>Ö.C.1<br>Ö.C.1<br>Ö.C.2<br>Ö.C.3 |
| 3.Week          | *Series-Parallel Resistor Circuits | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.C.1<br>Ö.C.1<br>Ö.C.1<br>Ö.C.1<br>Ö.C.2<br>Ö.C.3 |
| 4.Week          | *Kirchhoff's Laws                  | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.C.1<br>Ö.C.1<br>Ö.C.1<br>Ö.C.2<br>Ö.C.3          |

|          | <b>Teorical</b>                                                                                   | <b>Practice</b>                                                                                                                                                                    | <b>Laboratory</b>                                                                                         | <b>Preparation Info</b>                                        | <b>Teaching Methods</b>       | <b>Course Learning Outcomes</b>                                               |
|----------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|
| 5. Week  | *Kirchhoff's Laws, Delta-Star Transformation                                                      | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.3                                              |
| 6. Week  | *Voltage Source, Current Source, Dependent Source, Source Transformations                         | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.3                                              |
| 7. Week  | *Introduction to Simulation Software and Basic Circuit Simulation                                 | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.2<br>Ö.Ç.3                                     |
| 8. Week  | *Midterm Exam                                                                                     |                                                                                                                                                                                    |                                                                                                           |                                                                |                               | Ö.Ç.1<br>Ö.Ç.2<br>Ö.Ç.3                                                       |
| 9. Week  | *Mesh Current Method                                                                              | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.4                                              |
| 10. Week | *Node Voltage Method                                                                              | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.5                                              |
| 11. Week | *Superposition Method                                                                             | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.7                                              |
| 12. Week | *Thevenin's Theorem                                                                               | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.8                                              |
| 13. Week | *Norton's Theorem                                                                                 | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.9                                              |
| 14. Week | *Two-Port Method, Artificial Variable Method, Planar Circuit, Topological Tree, Millman's Theorem | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.2<br>Ö.Ç.6                                     |
| 15. Week | *Inductor and Capacitor in DC Circuits                                                            | *Demonstration of basic elements, working principles, functions in circuits and material selection for various tasks, ability to set up circuits and incorporate them into systems | *Basic Concepts, definition of circuit elements and establishing meaningful systems with circuit elements | *lecture notes, internet videos, circuit installation training | *Explanation, problem solving | Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.1<br>Ö.Ç.2                                     |
| 16. Week | *Final Exam                                                                                       |                                                                                                                                                                                    |                                                                                                           |                                                                |                               | Ö.Ç.1<br>Ö.Ç.2<br>Ö.Ç.3<br>Ö.Ç.4<br>Ö.Ç.5<br>Ö.Ç.6<br>Ö.Ç.7<br>Ö.Ç.8<br>Ö.Ç.9 |

Assesment Methods %

1 Ara Sinav: 40.000

3 Final : 60.000

ECTS Workload

| Activities                        | Count | Time(Hour) | Sum of Workload |
|-----------------------------------|-------|------------|-----------------|
| Vize                              | 1     | 1.00       | 1.00            |
| Ödev                              | 1     | 5.00       | 5.00            |
| Proje                             | 1     | 5.00       | 5.00            |
| Teorik Ders Anlatım               | 14    | 3.00       | 42.00           |
| Final                             | 1     | 5.00       | 5.00            |
| Ders Öncesi Bireysel Çalışma      | 5     | 1.00       | 5.00            |
| Ders Sonrası Bireysel Çalışma     | 10    | 2.00       | 20.00           |
| Ara Sınav Hazırlık                | 1     | 4.00       | 4.00            |
| Final Sınavı Hazırlık             | 1     | 5.00       | 5.00            |
| Laboratuvar                       | 14    | 1.00       | 14.00           |
| Uygulama / Pratik                 | 14    | 1.00       | 14.00           |
| Total : 120.00                    |       |            |                 |
| Sum of Workload / 30 ( Hour ) : 4 |       |            |                 |
| ECTS : 4.00                       |       |            |                 |

| Program And Outcome Relation |        |        |        |        |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                              | P.O. 1 | P.O. 2 | P.O. 3 | P.O. 4 | P.O. 5 | P.O. 6 | P.O. 7 | P.O. 8 | P.O. 9 | P.O. 10 | P.O. 11 | P.O. 12 | P.O. 13 | P.O. 14 | P.O. 15 | P.O. 16 | P.O. 17 | P.O. 18 | P.O. 19 | P.O. 20 |
| L.O. 1                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| L.O. 2                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| L.O. 3                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| L.O. 4                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| L.O. 5                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| L.O. 6                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| L.O. 7                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| L.O. 8                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| L.O. 9                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1       | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Average                      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0.67    | 5.00    | 1.00    | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

BEWARE OF PLAGIARISM Please pay attention to proper academic citation rules and avoid plagiarism, an unethical and academically fraudulent behavior, when completing reports, assignments, or other academic works, and it is treated with the same disciplinary action as cheating in a classroom setting. It is imperative to refrain from presenting another person's ideas, language, expressions, or any other form of intellectual property as your own. Regardless of quality, your assignments/projects/research should reflect your original work. Perfection is not a requirement, and in case of any uncertainties regarding academic writing guidelines, you may seek clarification from your course instructor.

Engel Durumu/Uyarlama Talebi : Engel durumuna ilişkin herhangi bir uyarlama talebinde bulunmak isteyen öğrenciler, dersin öğretim elemanı ya da Nevşehir Engelli Öğrenci Birimi ile en kısa sürede iletişime geçmelidir.